Інформатика

 

Історія інформатики

     Будь-яка нова наукова дисципліна, відповідаючи на певні актуальні виклики сучасності, має свої історичні витоки. У цьому сенсі інформатиці поталанило. Незважаючи на свій юний вік (а сучасна інформатика, набула свого бурхливого розвитку порівняно недавно – у другій половині XX ст.), її дескриптологічні корені простягаються далеко в минуле, коли вперше виникла ідея формалізації розумової діяльності людини. Перший крок у цьому напрямі зробив Арістотель (384–322 рр. до н. е.)

у теорії силогізмів. Значно пізніше, тільки через півтори тисячі років, було зроблено наступний крок і висунуто загальну ідею механізації логічних умовиводів і відокремлення їх від мозку людини. Вона належала іспанському логіку Р. Луллію (1235–1315), який поставив задачу на основі Аристотелевої логіки розробити універсальний метод пізнання й механізувати його за допомогою спеціальної машини, яка б моделювала силогічні виведення. Хоча Р.Луллію не вдалося до кінця реалізувати свій задум і побудувати таку машину, сама ідея і спроба моделювання та механізації логічних умовиводів стала піонерською в галузі створення штучних обробників інформації.

    Принциповим кроком на шляху до інформатики було створення в надрах математичної логіки й основ математики спеціальних інтенсіональних дескриптивних систем, призначених для уточнення й вивчення загальних властивостей інтуїтивного до цього поняття алгоритму та обчислюваної функції. Серед перших таких систем були лямбда-числення А. Чорча (1936), машини Тьюрінга (1936), алгоритми Поста (1936) тощо. Згодом було доведено, що в певному сенсі всі ці моделі алгоритмів еквівалентні. Уточнення поняття алгоритму дозволило виділити клас алгоритмічно розв’язних задач. Для багатьох задач була доведена їхня алгоритмічна нерозв’язність. Перший приклад такої задачі навів А. Чорч (1903–1995), який довів нерозв’язність чистого прикладного числення предикатів. 

Багато проблем, що сьогодні вирішує інформатика, давно розроблялись в руслі інших дисциплін: бібліотечної справибібліографіїлінгвістики тощо. Ще на початку 20 століття бельгійський юрист і учений Поль Отле запропонував об'єднати комплекс процесів із збирання, обробки, зберігання, пошуку і розповсюдження наукових документів під загальною назвою «документація», що іноді служить синонімом терміну «інформатика». В 1931 Міжнародний бібліографічний інститут, заснований П. Отле і бельгійським юристом і громадським діячем А. Лафонтеном в 1895, було перейменовано в Міжнародний інститут документації, а в 1938 — в Міжнародну федерацію з документації, яка й надалі лишається основною міжнародною організацією, що об'єднуєспеціалістів з інформатики і науково-інформаційної діяльності.

В 1945 з'явилась стаття американського вченого та інженера В. Буша «Можливий механізм нашого мислення», в якій вперше широко ставилось питання про необхідність механізації інформаційного пошуку. Міжнародні конференції з наукової інформації (Лондон, 1948; Вашингтон, 1958) знаменували перші етапи розвитку інформатики. Важливе значення мало вивчення закономірностей розсіювання наукових публікацій, проведене С. Бредфордом (Великобританія, 1948). До середини 60-х років 20 століття розроблялись в основному принципи і методи інформаційного пошуку та технічні засоби їхньої реалізації. У. Баттен (Великобританія), К. Муерс і М. Таубе (США) заклали основи координатного індексування; Б. Вікері, Д. Фоскет (Великобританія), Дж. Перрі, А. Кент, Дж. Костелло, Г. П. Лун, Ч. Берньер (США), Ж. К. Гарден (Франція) розробили основи теорії і методики інформаційного пошуку. С. Клевердон (Великобританія) вивчив методи порівняння технічної ефективності інформаційно-пошукових систем різного типу. Р. Шоу (США) і Ж. Самен (Франція) створили перші інформаційно пошукові пристрої на мікрофільмах і діамікрокартах, що стали прообразами багатьох спеціальних інформаційних машин. К. Мюллер і Ч. Карлсон (США) запропонували нові методи репродукування документів, які лягли в основу сучасної техніки репрографії.

Сучасний етап розвитку характеризується глибшим розумінням загальнонаукового значення науково-інформаційної діяльності та все ширшим застосуванням у ній електронних обчислювальних машин.

Джерело:   https://uk.wikipedia.org/wiki/

Історія розвитку обчислювальної техніки

Обчи́слювальна те́хніка — найважливіший компонент процесу обчислень і обробки даних. Першими пристосуваннями для обчислень були, ймовірно, лічильні палички, які й сьогодні використовуються в початкових класах багатьох шкіл для навчання лічбі. Розвиваючись, ці пристосування ставали складнішими, наприклад, такими як фінікійські глиняні фігурки, також призначені для наочного подання кількості, однак для зручності поміщались при цьому у спеціальні контейнери. Такими пристосуваннями, схоже, користувались торговці і рахівники того часу.

Поступово з найпростіших пристосувань для рахунку народжувались складніші пристрої: абак (рахівниця), логарифмічна лінійкамеханічний арифмометр,електронний комп'ютер. Незважаючи на простоту ранніх обчислювальних пристроїв, досвідчений рахівник може отримати результат за допомогою простих засобів навіть швидше, ніж деякі власники сучасних калькуляторів. Природно, сама по собі, продуктивність і швидкість рахунку сучасних обчислювальних пристроїв давно вже перевершують можливості найвидатнішої людини-рахівника.

   Людство навчилось користуватись найпростішими лічильними пристроями тисячі років тому. Найбільш затребуваною виявилась необхідність визначати кількість предметів, що використовуються у міновій торгівлі. Одним з найпростіших рішень було використання масового еквівалента предмета обміну, що не вимагало точного перерахунку кількості його складових. Для цього використовувались найпростіші балансирні ваги, які стали, таким чином, одним з перших пристроїв для кількісного визначення маси.

Юпана (абакінків) імовірно використовувавчисла Фібоначчі

Порівняно складним пристосуванням для рахунку могли бути чотки, застосовувані в практиці багатьох релігій. Віряни як на рахівниці відраховували на зернах чоток кількість виголошених молитов, а при проході повного кола чоток пересували на окремому хвостику особливі зерна-лічильники, які означали кількість відлічених кіл.

  • 3000 років до н. е. — у стародавньому Вавилоні була винайдена перша рахівниця — абак. Кількість підрахованих предметів відповідало числу пересунутих кісточок цього інструменту.
  • 500 років до н. е. — у Китаї з'явився більш «сучасний» варіант абаку з кісточками на стрижнях — суаньпань. Одним із різновидів суаньпань є російська рахівниця, яка іноді використовується і нині.
Джерело:  https://ru.wikipedia.org

Вільгельм Шиккард

1623 року (більш ніж через 100 років після смерті Леонардо да Вінчі) німецький вчений Вільгельм Шиккард запропонував свою модель шестирозрядного десятинного обчислювача, який мав складатися також із зуб­чатих коліщаток та міг би виконувати додавання, віднімання, а також множення та ділення. Винаходи да Вінчі та Шиккарда були знайдені лише в наш час і залишилися тільки на папері.

Блез Паскаль

1642 року 19-річний французький математик Блез Паскаль сконструював першу в світі працюючу механічну обчислювальну машину, відому як підсумовуюча машина Паскаля («Паскаліна»). Ця машина являла собою комбінацію взаємопов'язаних коліщаток та приводів. На коліщатках були зображені цифри від 0 до 9. Якщо перше коліщатко робить повний оберт від 0 до 9, автоматично починає рухатись друге коліщатко. Якщо і друге коліщатко доходить до цифри 9, починає обертатися третє і так далі. Ма­шина Паскаля могла лише додавати та віднімати.

Готфрід Вільгельм фон Лейбніц

1673 року німецький математик Готфрід Вільгельм фон Лейбніц сконструював свою обчислювальну машину. На відміну від Паскаля, Лейбніц використав у своїй машині циліндри, а не коліщатка та приводи. На цилінд­ри було нанесено цифри. Кожен циліндр мав дев'ять рядків виступів та зубців. При цьому перший ряд мав один виступ, другий ряд — два висту­пи і так до дев'ятого ряду, який мав відповідно дев'ять виступів. Циліндри з виступами були пересувними, оператор надавав їм певного положення.

Машина Лейбніца, на відміну від підсумовуючої машини Паскаля, була значно складнішою за конструкцією. Вона була здатна виконувати не тіль­ки додавання та віднімання, але й множення, ділення та обчислювання квадратного кореня.

Обчислювальні машини XIX сторіччя

Чарльз Бебідж

Винахід першої програмованої обчислювальної машини належить видатному англійському математику Чарлзу Бебіджу (1830 р.). Він присвятив майже все своє життя цій праці, але так і не створив діючу модель. Бебідж назвав свій винахід «Аналітична машина». За планом машина мала діяти завдяки: силі пару. При цьому вона була б здатна сприймати команди, виконувати обчислення та видавати необхідні результати у надрукованому вигляді. Про­грами в свою чергу мали кодуватися та переноситись на перфокарти. Ідея використання перфокарт була запозичена Бебіджем у французького винахід­ника Жозефа Жаккара (кінець XVIII ст.). Для контролю ткацьких операцій Жаккар використовував отвори, пробиті в картках. Картки з різним розташу­ванням отворів давали різні візерунки на плетінні тканини. По суті, Бебідж був першим, хто використав перфокарти стосовно обчислювальних машин.



Августа Лавлейс  

Серед учених, які зробили значний внесок у розвиток обчислювальної техніки, була математик леді Августа Лавлейс — дочка видатного англійського поета лорда Байрона. Саме вона переконала Бебіджа у необхідності використання у його винаході двійкової системи обчислення замість десяткової. Вона також розробила принципи програмування, що передбачали повторення послідовності команд та виконання цих команд за певних умов. Ці принципи використовуються і в сучасній обчислювальній техніці.

Герман Холеріт

Чарлз Бебідж вперше висловив ідею використання перфокарт в обчислювальній техніці, але реалізовано цю ідею було тільки 1887 року Германом Холерітом. Його машина була призначена для обробки результатів перепису населення США. Також Холеріт уперше застосував для організації процесу обчислення електричну силу.

Картки використовувались для кодування даних перепису, при цьому на кожну людину була заведена окрема картка. Кодування велося за допомо­гою певного розташування отворів, що пробивалися в картці по рядках та колонках. Наприклад, отвір, що був пробитий в третій колонці та четвертому рядку, міг означати, що людина одружена. Коли картка, що мала розмір банкноти в один долар, пропускалася крізь машину, вона прощупувалась системою голок. Якщо навпроти голки з'являвся отвір, то голка проходила крізь нього і доторкалася до металевої поверхні, що була розташована під карткою. Контакт, який відбувався при цьому, замикав електричний лан­цюг, завдяки чому до результату обчислення додавалася одиниця.

Перші електронно-обчислювальні машини

Перші електронні комп'ютери з'явилися в першій половині XX ст. На відміну від попередніх, вони могли виконувати задану послідовність операцій за програмою, що була задана раніше, або послідовно розв'язувати задачі різних типів. Перші комп'ютери були здатні зберігати інформацію в спеціальній пам'яті.

Конрад Цузе


1934 року німецький студент Конрад Цузе, який працював над дипломним проектом, вирішив створити у себе вдома цифрову обчислювальну машину з програмним управлінням та з використанням (вперше в світі) двійкової системи числення. 1937 року машина 21 (Цузе 1) запрацювала. Вона була 22-розрядною, з пам'яттю на 64 числа і працювала на суто механічній (важільній) базі.

Необхідність у швидких та точних обчисленнях особливо зросла під час Дру­гої світової війни (1939—1945 рр.) перш за все для розв'язання задач балістики, тобто науки про траєкторію польоту артилерійських та інших снарядів до цілі.

Джон Атанасов


1937 року Джон Атанасов (американський вчений, болгарин за походженням) вперше запропонував ідею використання електронних ламп як носіїв інформації.



Алан Тьюрінг

В 1942—1943 роках в Англії була створена за участю Алана Тьюрінга обчислювальна машина «Колос». В ній було 2000 електронних ламп. Машина призначалася для розшифрування радіограм німецького вермахту. «Колос» вперше в світі зберігав та обробляв дані за допомогою електроніки, а не механічно.

Машини Цузе та Тьюрінга були засекреченими, про їх створення стало відомо через багато років після закінчення війни.

Говард Айкен - Марк 1

 1944 року під керівництвом професора Гарвардського університету Говарда Айкена було створено обчислювальну машину з автоматичним керуванням послідовністю дій, відому під назвою Марк 1. Ця обчислювальна машина була здатна сприймати вхідні дані з перфокарт або перфострічок. Машина Марк 1 була електромеханічною, для зберігання даних використовувались механічні прилади (коліщатка та перемикачі). Машина Айкена могла виконувати близько однієї операції за секунду та мала величезні розміри: понад 15 м завдовжки та близько 2,5 м заввишки і складалася більш ніж із 750 тисяч деталей. 

   Джон Моучлі та Дж. Преспер Еккерт - ЕНІАК

1946 року групою інженерів під керівництвом Джона Моучлі та Дж. Преспера Еккерта на замовлення військового відомства США було створено ма­шину ЕНІАК, яка була здатна виконувати близько 3 тисяч операцій за секун­ду. За розмірами ЕНІАК був більшим за Марк 1: понад ЗО метрів завдовжки, його об'єм становив 85 м3. Важив ЕНІАК ЗО тонн. Замість тисяч механічних деталей Марка 1, в ЕНІАКу було використано 18 тисяч електронних ламп.

Джон фон Нейман


Суттєвий внесок у створення ЕОМ зробив американський математик Джон фон Нейман, що брав участь у створенні ЕНІАКа. Фон Нейман запропонував ідею зберігання програми в пам'яті машини. Такі ЕОМ були знач­ним кроком уперед на шляху створення більш досконалих машин. Вони були здатні обробляти команди в різному порядку.

ЕДСАК

Перша ЕОМ, яка зберігала програми у пам'яті, дістала назву ЕДСАК (Electronic Delay Storage Automatic Calculator — електронний калькулятор з пам'яттю на лініях затримки). Вона була створена в Кембріджському університеті (Англія) 1949 року. З того часу всі ЕОМ є комп'ютерами з програмами, які зберігаються у пам'яті.

С. Лєбєдєв – МЕОМ, ШЕОМ

1951 року в Києві під керівництвом С. Лєбєдєва незалежно було створено МЕОМ (Мала Електрична Обчислювальна Машина). 1952 року ним же було створено ШЕОМ (Швидкодіюча Електрична Обчислювальна Машина), яка була на той час кращою в світі та могла виконувати близько 8 тисяч операцій за секунду.

Джон Моучлі та Дж. Преспер Еккерт - UNIVAC

1951 року компанія Джона Моучлі та Дж. Преспера Еккерта створила маши­ну UNIVAC (Universal Automatic Computer — універсальна автоматична обчис­лювальна машина). Перший екземпляр ЮНІВАКа було передано в Бюро перепи­су населення США. Потім було створено багато різних моделей ЮНІВАКа, які почали застосовуватися у різних сферах діяльності. Таким чином, ЮНІВАК став першим серійним комп'ютером. Крім того, це був перший комп'ютер, в якому замість перфострічок та карток було використано магнітну стрічку.

Покоління комп'ютерів

Перше поко­ління комп'ютерів

Такі комп'ютери, як ЕНІАК, ЕДСАК, ШЕОМ та ЮНІВАК, являли собою. лише перші моделі ЕОМ. Упродовж десятиріччя після створення ЮНІВАКа було виготовлено та введено в експлуатацію в США близько 5000 комп'ютерів.

Гігантські машини на електронних лампах 50-х років склали перше поко­ління комп'ютерів.

Друге покоління комп'ютерів

Друге покоління комп'ютерів з'явилося на початку 60-х років, коли на зміну електронним лампам прийшли транзистори. Винайдені 1948 р. транзистори, як виявилось, були спроможні виконувати всі ті функції, які до цього часу виконували електронні лампи. Але при цьому вони були значно менші за розмірами та споживали набагато менше електроенергії. До того ж транзистори дешевші, випромінюють менше тепла та більш надійні, ніж електронні лампи. І все ж таки найдивовижнішою властивістю транзистора є те, що він один здатен виконувати функції 40 електронних ламп та ще й з більшою швидкістю, ніж вони. В результаті швидкодія машин другого покоління ви­росла приблизно в 10 разів порівняно з машинами першого покоління, обсяг їх пам'яті також збільшився. Водночас із процесом заміни електронних ламп транзисторами вдосконалювалися методи зберігання інформації. Магнітну стрічку, що вперше було використано в ЕОМ ЮНІВАК, почали використовувати як для введення, так і для виведення інформації. А в середині 60-х років набуло поширення зберігання інформації на дисках.

Третє покоління комп'ютерів

Поява інтегрованих схем започаткувала новий етап розвитку обчислювальної техніки — народження машин третього покоління. Інтегрована схема, яку також називають кристалом, являє собою мініатюрну електронну схему, витравлену на поверхні кремнієвого кристала площею приблизно 10 мм2. Перші інтегровані схеми (ІС) з'явилися 1964 року.

Поява інтегрованих схем означала справжню революцію в обчислювальній техніці. Одна така схема здатна замінити тисячі транзисторів, кожний 3 яких у свою чергу уже замінив 40 електронних ламп. Інакше кажучи, один крихітний, але складний кристал має такі ж самі обчислювальні можливості, як і 30-тонний ЕНІАК!

Швидкодія ЕОМ третього покоління збільшилася приблизно в 100 разів порівняно з машинами другого покоління, а розміри набагато змен­шилися.

Четверте покоління комп'ютерів

Четверте покоління — ЕОМ на великих інтегрованих схемах.

Розвиток мікроелектроніки дав змогу розміщати на одному кристалі тисячі інтегрованих схем. Так, 1980 р. центральний процесор невеликої ЕОМ вдалося розташувати на кристалі площею 1,6 см2. Почалася епоха мікрокомп'ютерів. Швидкодія сучасної ЕОМ в десятки разів перевищує швидкодію ЕОМ третього покоління на інтегральних схемах, в 100 разів — швидкодію ЕОМ другого покоління на транзисторах та в 10 000 разів швидкодію ЕОМ першого покоління на електронних лампах.

П’яте покоління комп'ютерів

Нині створюються та розвиваються ЕОМ п'ятого покоління — ЕОМ на надвеликих інтегрованих схемах. Ці ЕОМ використовують нові рішення у архітектурі комп'ютерної системи та принципи штучного інтелекту.

Немає коментарів:

Дописати коментар